On the almost sure convergence of sums

نویسندگان

چکیده

Two counterexamples, addressing questions raised in Adamczak (2019) and Poly Zheng (2019), are provided. Both counterexamples related to chaoses. Let F n = Y + Z , where the random variables belong different chaoses of uniformly bounded degree. It may be that ? a . s 0 L 2 ? E { sup | } < ? for some > yet fails converge a.s.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The Almost Sure Convergence for Weighted Sums of Linear Negatively Dependent Random Variables

In this paper, we generalize a theorem of Shao [12] by assuming that is a sequence of linear negatively dependent random variables. Also, we extend some theorems of Chao [6] and Thrum [14]. It is shown by an elementary method that for linear negatively dependent identically random variables with finite -th absolute moment the weighted sums converge to zero as where and is an array of...

متن کامل

THE ALMOST SURE CONVERGENCE OF WEIGHTED SUMS OF NEGATIVELY DEPENDENT RANDOM VARIABLES

In this paper we study the almost universal convergence of weighted sums for sequence {x ,n } of negatively dependent (ND) uniformly bounded random variables, where a, k21 is an may of nonnegative real numbers such that 0(k ) for every ?> 0 and E|x | F | =0 , F = ?(X ,…, X ) for every n>l.

متن کامل

Almost sure convergence of weighted sums of independent random variables

Let (Ω,F ,P) be a probability space, and let {Xn} be a sequence of integrable centered i.i.d. random variables. In this paper we consider what conditions should be imposed on a complex sequence {bn} with |bn| → ∞, in order to obtain a.s. convergence of P n Xn bn , whenever X1 is in a certain class of integrability. In particular, our condition allows us to generalize the rate obtained by Marcin...

متن کامل

the almost sure convergence of weighted sums of negatively dependent random variables

in this paper we study the almost universal convergence of weighted sums for sequence {x ,n } of negatively dependent (nd) uniformly bounded random variables, where a, k21 is an may of nonnegative real numbers such that 0(k ) for every ?> 0 and e|x | f | =0 , f = ?(x ,…, x ) for every n>l.

متن کامل

the almost sure convergence for weighted sums of linear negatively dependent random variables

in this paper, we generalize a theorem of shao [12] by assuming that is a sequence of linear negatively dependent random variables. also, we extend some theorems of chao [6] and thrum [14]. it is shown by an elementary method that for linear negatively dependent identically random variables with finite -th absolute moment the weighted sums converge to zero as where and is an array of real numbe...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Statistics & Probability Letters

سال: 2021

ISSN: ['1879-2103', '0167-7152']

DOI: https://doi.org/10.1016/j.spl.2021.109045